Data from thermal vac

The data from the first thermal vacuum test has been analyzed.  Graphs have been made, edited, and made again.  This is great practice for compiling the larger data set we will get during the longer August flight.  We can monitor the rotation of the payload, the position of the doors, the temperatures of the components, and the relative humidity.  We believe the relative humidity made play a crucial role in the survival of aerosolized microbes.

It appears as though the modification for the rotation of the HADES payload did not survive the cold.  Since this was a quick fix, we are not completely surprised.  The doors operated as predicted during the cold cycle, but they managed to fail during the hot cycle.  We are currently trying to mitigate this door jam.  We have a few different approaches to try before tomorrow’s repeat of the thermal-vac test.

The teams that did not make it into the first round of thermal-vac testing will also get to test their payloads tomorrow.  Several of the teams have already passed flight certification and are packed and ready to go to Fort Sumner, NM.  Since everything worked properly during the first test, they do not have to repeat their experiments.

With the ability to test, tinker, and test again, I find myself thinking of the Curiosity team’s seven minutes of terror.  Keith Commeaux, LSU alum and director of the descent, entry, and landing of Curiosity, came to talk to the ACES (Aerospace Catalyst Experience for Students) group at LSU.  He said they were able to test the individual components of the craft, but it was impossible to have a full landing simulation.  The Curiosity landing was the first full operation of all the descent and landing systems.  Years of work and planning all came down to those seven minutes of complete terror.  Hats off again to the Curiosity team.!prettyPhoto



Payload Preparation

The team is making a few last minute adjustments before we head to NASA’s Columbia Scientific Ballooning Facility in Palestine Texas.  Once there, the payload will be subjected to a thermal vac test to mimic the environmental conditions of the stratosphere.